<html><head><meta name="color-scheme" content="light dark"></head><body><pre style="word-wrap: break-word; white-space: pre-wrap;">from __future__ import annotations

from collections.abc import Sequence
import copy
import math
from typing import TYPE_CHECKING
import warnings

import optuna
from optuna import logging
from optuna import pruners
from optuna.trial import FrozenTrial
from optuna.trial import TrialState


if TYPE_CHECKING:
    from optuna import Study
    from optuna import Trial


# This is used for propagating warning message to Study.optimize.
STUDY_TELL_WARNING_KEY = "STUDY_TELL_WARNING"


_logger = logging.get_logger(__name__)


def _get_frozen_trial(study: Study, trial: Trial | int) -&gt; FrozenTrial:
    if isinstance(trial, optuna.Trial):
        trial_id = trial._trial_id
    elif isinstance(trial, int):
        trial_number = trial
        try:
            trial_id = study._storage.get_trial_id_from_study_id_trial_number(
                study._study_id, trial_number
            )
        except KeyError as e:
            raise ValueError(
                f"Cannot tell for trial with number {trial_number} since it has not been "
                "created."
            ) from e
    else:
        raise TypeError("Trial must be a trial object or trial number.")

    return study._storage.get_trial(trial_id)


def _check_state_and_values(
    state: TrialState | None, values: float | Sequence[float] | None
) -&gt; None:
    if state == TrialState.COMPLETE:
        if values is None:
            raise ValueError(
                "No values were told. Values are required when state is TrialState.COMPLETE."
            )
    elif state in (TrialState.PRUNED, TrialState.FAIL):
        if values is not None:
            raise ValueError(
                "Values were told. Values cannot be specified when state is "
                "TrialState.PRUNED or TrialState.FAIL."
            )
    elif state is not None:
        raise ValueError(f"Cannot tell with state {state}.")


def _check_values_are_feasible(study: Study, values: Sequence[float]) -&gt; str | None:
    for v in values:
        # TODO(Imamura): Construct error message taking into account all values and do not early
        # return `value` is assumed to be ignored on failure so we can set it to any value.
        try:
            float(v)
        except (ValueError, TypeError):
            return f"The value {repr(v)} could not be cast to float"

        if math.isnan(v):
            return f"The value {v} is not acceptable"

    if len(study.directions) != len(values):
        return (
            f"The number of the values {len(values)} did not match the number of the objectives "
            f"{len(study.directions)}"
        )

    return None


def _tell_with_warning(
    study: Study,
    trial: Trial | int,
    value_or_values: float | Sequence[float] | None = None,
    state: TrialState | None = None,
    skip_if_finished: bool = False,
    suppress_warning: bool = False,
) -&gt; FrozenTrial:
    """Internal method of :func:`~optuna.study.Study.tell`.

    Refer to the document for :func:`~optuna.study.Study.tell` for the reference.
    This method has one additional parameter ``suppress_warning``.

    Args:
        suppress_warning:
            If :obj:`True`, tell will not show warnings when tell receives an invalid
            values. This flag is expected to be :obj:`True` only when it is invoked by
            Study.optimize.
    """

    # We must invalidate all trials cache here as it is only valid within a trial.
    study._thread_local.cached_all_trials = None

    # Validate the trial argument.
    frozen_trial = _get_frozen_trial(study, trial)
    if frozen_trial.state.is_finished() and skip_if_finished:
        _logger.info(
            f"Skipped telling trial {frozen_trial.number} with values "
            f"{value_or_values} and state {state} since trial was already finished. "
            f"Finished trial has values {frozen_trial.values} and state {frozen_trial.state}."
        )
        return copy.deepcopy(frozen_trial)
    elif frozen_trial.state != TrialState.RUNNING:
        raise ValueError(f"Cannot tell a {frozen_trial.state.name} trial.")

    # Validate the state and values arguments.
    values: Sequence[float] | None
    if value_or_values is None:
        values = None
    elif isinstance(value_or_values, Sequence):
        values = value_or_values
    else:
        values = [value_or_values]

    _check_state_and_values(state, values)

    warning_message = None

    if state == TrialState.COMPLETE:
        assert values is not None

        values_conversion_failure_message = _check_values_are_feasible(study, values)
        if values_conversion_failure_message is not None:
            raise ValueError(values_conversion_failure_message)
    elif state == TrialState.PRUNED:
        # Register the last intermediate value if present as the value of the trial.
        # TODO(hvy): Whether a pruned trials should have an actual value can be discussed.
        assert values is None

        last_step = frozen_trial.last_step
        if last_step is not None:
            last_intermediate_value = frozen_trial.intermediate_values[last_step]
            # intermediate_values can be unacceptable value, i.e., NaN.
            if _check_values_are_feasible(study, [last_intermediate_value]) is None:
                values = [last_intermediate_value]
    elif state is None:
        if values is None:
            values_conversion_failure_message = "The value None could not be cast to float."
        else:
            values_conversion_failure_message = _check_values_are_feasible(study, values)

        if values_conversion_failure_message is None:
            state = TrialState.COMPLETE
        else:
            state = TrialState.FAIL
            values = None
            if not suppress_warning:
                warnings.warn(values_conversion_failure_message)
            else:
                warning_message = values_conversion_failure_message

    assert state is not None

    # Cast values to list of floats.
    if values is not None:
        # values have been checked to be castable to floats in _check_values_are_feasible.
        values = [float(value) for value in values]

    # Post-processing and storing the trial.
    try:
        # Sampler defined trial post-processing.
        study = pruners._filter_study(study, frozen_trial)
        study.sampler.after_trial(study, frozen_trial, state, values)
    finally:
        study._storage.set_trial_state_values(frozen_trial._trial_id, state, values)

    frozen_trial = copy.deepcopy(study._storage.get_trial(frozen_trial._trial_id))

    if warning_message is not None:
        frozen_trial._system_attrs[STUDY_TELL_WARNING_KEY] = warning_message
    return frozen_trial
</pre></body></html>