
    'YHh9                        d Z ddlZddlmZ ddlmZmZ d Zd&dZ	d	 Z
d'd
Zd'dZd'dZg dZedk(  rF ed       dZ ej$                  e      ZdZ ej*                  g d      Z ej*                  ddgddgddgddgddgddgddgddgddgddgddgddgg      Zej0                  edez  f   Z e eeed              e eeed              e eee      D  cg c]  }  ej6                  e| ez
  |         c}         eeddd      Z eeddd      Z ee        ee        eeeez  z
          eeedz
  ddf    eedd              eeedz  e dz  dz   df    eedd              eede dz   df    eeed              ed       ej0                  edez  f   Z e eeddd              e eeed              e eeed              eeedz
  dddf    eedd              eeedz  e dz  dz   ddf    eedd              eede dz   ddf    eeed              eeedz
  d  eeddd              eeedz  e dz  dz     eeddd              eede dz     eeed             ddlmZ  eej@                  jC                  e ej*                  g d      dz  d               ej*                  g d!      Z" ee" e ej$                  d"      dd              ej*                  g d#      Z# ee# e ej$                  d"      dd              ej*                  g d$      Z$ ee$ e ej$                  d"      d%d             yyc c} w )(a  using scipy signal and numpy correlate to calculate some time series
statistics

original developer notes

see also scikits.timeseries  (movstat is partially inspired by it)
added 2009-08-29
timeseries moving stats are in c, autocorrelation similar to here
I thought I saw moving stats somewhere in python, maybe not)


TODO

moving statistics
- filters do not handle boundary conditions nicely (correctly ?)
e.g. minimum order filter uses 0 for out of bounds value
-> append and prepend with last resp. first value
- enhance for nd arrays, with axis = 0



Note: Equivalence for 1D signals
>>> np.all(signal.correlate(x,[1,1,1],'valid')==np.correlate(x,[1,1,1]))
True
>>> np.all(ndimage.filters.correlate(x,[1,1,1], origin = -1)[:-3+1]==np.correlate(x,[1,1,1]))
True

# multidimensional, but, it looks like it uses common filter across time series, no VAR
ndimage.filters.correlate(np.vstack([x,x]),np.array([[1,1,1],[0,0,0]]), origin = 1)
ndimage.filters.correlate(x,[1,1,1],origin = 1))
ndimage.filters.correlate(np.vstack([x,x]),np.array([[0.5,0.5,0.5],[0.5,0.5,0.5]]), origin = 1)

>>> np.all(ndimage.filters.correlate(np.vstack([x,x]),np.array([[1,1,1],[0,0,0]]), origin = 1)[0]==ndimage.filters.correlate(x,[1,1,1],origin = 1))
True
>>> np.all(ndimage.filters.correlate(np.vstack([x,x]),np.array([[0.5,0.5,0.5],[0.5,0.5,0.5]]), origin = 1)[0]==ndimage.filters.correlate(x,[1,1,1],origin = 1))


update
2009-09-06: cosmetic changes, rearrangements
    N)signal)assert_array_equalassert_array_almost_equalc                     |}t        j                  |       dk(  r|t        j                  |       d   f}t         j                  t        j                  |      | d   z  | t        j                  |      | d   z  f   S )N      r   )npndimshaper_ones)xkkadds      X/var/www/html/planif/env/lib/python3.12/site-packages/statsmodels/sandbox/tsa/movstat.py	expandarrr   3   sd    D	wwqzQbhhqk!n%55qt#AbggdmAbE&99::       laggedc                 P   |dk(  r|dz  }n|dk(  rd}n|dk(  r
| dz  dz   }nt         t        j                  |      r|}n'|dk(  r	|dz
  dz  }n|dk(  rd}n|d	k(  r|dz
  }nt         t        | |      }t	        j
                  |t        j                  |      |      ||z
  ||z     S )
an  moving order statistics

    Parameters
    ----------
    x : ndarray
       time series data
    order : float or 'med', 'min', 'max'
       which order statistic to calculate
    windsize : int
       window size
    lag : 'lagged', 'centered', or 'leading'
       location of window relative to current position

    Returns
    -------
    filtered array


    r   r   centeredr   leadingr   medminmax)
ValueErrorr
   isfiniter   r   order_filterr   )r   orderwindsizelagleadordxexts          r   movorderr&   :   s    , h{	
				y!|Q	{{5	%!|Q	%	%l Q!DtBGGH$5c:8D=8TX=IYZZr   c                  &   ddl m}  t        j                  dd      }t	        |d      }t        ||       t        j                  ddd      }t	        |d      }t        ||       t        t	        |dd	
      dd |dd        t        j                  ddt        j                  z  d      }t        j                  |      dz   }t	        |d      }| j                          | j                  ||d||d       | j                  d       t	        |dd	
      }| j                          | j                  ||d||d       | j                  d       t	        |dd
      }| j                          | j                  ||d||d       | j                  d       y)zgraphical test for movorderr   Nr   
   r   )r    r	   r   r   )r    r"   r      z.-zmoving max laggedzmoving max centeredr   zmoving max leading)matplotlib.pylabpylabr
   aranger&   r   linspacepisinfigureplottitle)pltr   xotts       r   check_movorderr6   h   sI   "
		!BA	!5	!Br1
		"QrA	!5	!Br1xJ?DaeL	Qqwr	"B
r
QA	!5	!BJJLHHR$r"T"II!"	!5j	1BJJLHHR$r"T"II#$	!5i	0BJJLHHR$r"T"II"#r   c                      t        | d||      S )a  moving window mean


    Parameters
    ----------
    x : ndarray
       time series data
    windsize : int
       window size
    lag : 'lagged', 'centered', or 'leading'
       location of window relative to current position

    Returns
    -------
    mk : ndarray
        moving mean, with same shape as x


    Notes
    -----
    for leading and lagging the data array x is extended by the closest value of the array


    r   
windowsizer"   	movmoment)r   r9   r"   s      r   movmeanr<      s    2 Qjc::r   c                 N    t        | d||      }t        | d||      }|||z  z
  S )aG  moving window variance


    Parameters
    ----------
    x : ndarray
       time series data
    windsize : int
       window size
    lag : 'lagged', 'centered', or 'leading'
       location of window relative to current position

    Returns
    -------
    mk : ndarray
        moving variance, with same shape as x


    r   r8   r   r:   )r   r9   r"   m1m2s        r   movvarr@      s2    ( 
1aJC	8B	1aJC	8B2:r   c                    |}|dk(  r d}t        |dz
  xs dd|dz
  z  xs d      }nr|dk(  r.| dz  }t        |dz
  |dz  z   xs d|dz
   |dz  z
  xs d      }n?|dk(  r4| dz   }t        d|dz
  z  dz   |z   xs dd|dz
  z  |z    dz   xs d      }nt        t        j                  |      t	        |      z  }t        | |dz
        }t        |       |j                  dk(  rt        j                  ||z  |d	      |   S t        |j                         t        |dddf   j                         t        j                  ||z  |dddf   d	      |ddf   S )
a  non-central moment


    Parameters
    ----------
    x : ndarray
       time series data
    windsize : int
       window size
    lag : 'lagged', 'centered', or 'leading'
       location of window relative to current position

    Returns
    -------
    mk : ndarray
        k-th moving non-central moment, with same shape as x


    Notes
    -----
    If data x is 2d, then moving moment is calculated for each
    column.

    r   r   r   Nr   r   r   full)slicer   r
   r   floatr   printr   	correlater   r   )	r   r   r9   r"   r!   r#   slavgkernr%   s	            r   r;   r;      s{   4 H
hHQJ'4XaZ)@DA	
	y!|HQJ!+3txz]8Q;5N5VRVW			y!|1hqj>!#D(0DAxzN44G2H2J2RdSwwz"5#44GQ
#D 
"IyyA~||D!GWf5b99 	djjgafo##$ a4&A"Q$GGr   )r&   r<   r@   r;   __main__z!
checkin moving mean and variancer(   )        gUUUUUU?      ?g       @      @g      @      @      @      @       @gUUUUUU!@	   rK   g#q?g|
q?gvWUU?gUUU@r   r8   r   r   r   z-
checking moving moment for 2d (columns only))ndimage)r   r   r   rM   )axis)drK   g?333333?333333?rL         ? @ffffff@@      @      @      @      @      !@      #@      %@      '@      )@      +@      -@      /@     0@     1@     2@     3@     4@     5@     6@     7@     8@     9@     :@     ;@     <@     =@     >@     ?@     @@@     @@     @A@     A@     @B@     B@     @C@     C@     @D@     D@     @E@     E@     @F@     F@     @G@     G@     @H@     H@     @I@     I@     @J@     J@     @K@     K@     @L@     L@     @M@     M@     @N@     N@     @O@     O@      P@     `P@     P@     P@      Q@     `Q@     Q@     Q@      R@     `R@     R@     R@      S@     `S@     S@     S@      T@     `T@     T@     T@      U@     `U@     U@     U@      V@     `V@     V@     V@      W@     `W@     W@d   )krU   rV   rL   rW   rX   rY   rZ   r[   r\   r]   r^   r_   r`   ra   rb   rc   rd   re   rf   rg   rh   ri   rj   rk   rl   rm   rn   ro   rp   rq   rr   rs   rt   ru   rv   rw   rx   ry   rz   r{   r|   r}   r~   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   gW@gX@g9X@g     `X@g     X@gX@g̬X@gX@g     X@)dg<b\t?gq袋?gmF]@g.
@g$E]@rN   rO   rP   rQ   g      "@g      $@g      &@g      (@g      *@g      ,@g      .@g      0@g      1@g      2@g      3@g      4@g      5@g      6@g      7@g      8@g      9@g      :@g      ;@g      <@g      =@g      >@g      ?@g      @@g     @@g      A@g     A@g      B@g     B@g      C@g     C@g      D@g     D@g      E@g     E@g      F@g     F@g      G@g     G@g      H@g     H@g      I@g     I@g      J@g     J@g      K@g     K@g      L@g     L@g      M@g     M@g      N@g     N@g      O@g     O@g      P@g     @P@g     P@g     P@g      Q@g     @Q@g     Q@g     Q@g      R@g     @R@g     R@g     R@g      S@g     @S@g     S@g     S@g      T@g     @T@g     T@g     T@g      U@g     @U@g     U@g     U@g      V@g     @V@g     V@g     V@g      W@g     @W@g     W@g⣋.W@g٧뢋W@gEX@gb\tEX@gw.hX@   )r   r   r   )r   r   )%__doc__numpyr
   scipyr   numpy.testingr   r   r   r&   r6   r<   r@   r;   __all____name__rF   nobsr,   r   wsarrayavevac_ave2drangevarr>   r?   x2drS   filterscorrelate1dxgxdxc)is   0r   <module>r      sA  *X   G;,[\$j;609Hf 9z	
./D		$A	
B
"((  C	R"-*-*-*-*-*-*-*-*-*-*-"-/ 
0B EE#qu*E	'!
12	&rx
01	eBo
66266!AbD)
67	1aA8	4B	1aA8	4B	"I	"I	"r"u* bAqk1	:<bQsAvax!121
;=b2#a%l1:<
 

:;
%%1Q3-C	)Cqj
9:	'#"(
34	&
23bAqk31)<>bQsAvax!1231*=?b2#a%l328<> eBqDElc1	BDeBE2#q&(3c1
CEeFbSUmCBH=? 	'//
%
%c8288G+<R+?a
%
HI
 
  
B b')"))C."X"FG	 G 
HB b')"))C."Y"GH	 G 
HB2 b')"))C."Z"HIo . 7s    M<