
    *YHh                        d Z ddlZddlmZ ddlZddlmZ ddlm	Z	m
Z
mZmZmZ ddlmZ ddlmZmZmZ dd	lmZ dd
lmZmZmZmZmZ g dZ	 d;dZ	 d<dZ edgdgddg eddh      dgdd      dddd       Z edgdgddg eeddd      g eddh      dgdd      ddddd       Z  edgdgddg eddh      dgdd      dddd       Z! edgdgddg eddh      dgdd      dddd       Z" edgdgddg eddh      dgdd      dddd       Z# edgdgddg eddh      dgdd      dddd        Z$ edgdgddg eddh      dgdd      dddd!       Z% edgdg eddh      dgddgd"d      ddd#d$       Z&d% Z' edgdgddg eh d&      dgd'gd(d      dddd)d*       Z( edgdgddg eh d&      ddgd'gd(d      dddd)d+       Z) edgdgd,d      d-        Z*d. Z+ edgdgddg eeddd/       eeddd0      gd1d      ddd2d3       Z, edgdgddgd4d      dd5d6       Z- edgdgddgd4d      dd5d7       Z. edgdgddg eeddd/       eeddd0      gd1d      ddd2d8       Z/ edgdgddg eeddd      g eddh      dgdd      ddddd9       Z0 edgdgddg eddh      dgdd      dddd:       Z1y)=zMetrics to assess performance on regression task.

Functions named as ``*_score`` return a scalar value to maximize: the higher
the better.

Function named as ``*_error`` or ``*_loss`` return a scalar value to minimize:
the lower the better.
    N)Real   )UndefinedMetricWarning)_average_find_matching_floating_dtypeget_namespaceget_namespace_and_devicesize)_xlogy)Interval
StrOptionsvalidate_params)_weighted_percentile)_check_sample_weight_num_samplescheck_arraycheck_consistent_lengthcolumn_or_1d)	max_errormean_absolute_errormean_squared_errormean_squared_log_errormedian_absolute_errormean_absolute_percentage_errormean_pinball_lossr2_scoreroot_mean_squared_log_errorroot_mean_squared_errorexplained_variance_scoremean_tweedie_deviancemean_poisson_deviancemean_gamma_devianced2_tweedie_scored2_pinball_scored2_absolute_error_scorec                    t        | |||      \  }}t        | ||       t        | d|      } t        |d|      }|t        || |      }| j                  dk(  r|j                  | d      } |j                  dk(  r|j                  |d      }| j                  d   |j                  d   k7  r5t        dj                  | j                  d   |j                  d               | j                  d   }d}t        |t              r||vrkt        d	j                  ||            |Nt        |d
      }|dk(  rt        d      ||j                  d   k7  rt        d|j                  d    d| d      |dk(  rdnd}	|	| |||fS )a  Check that y_true, y_pred and sample_weight belong to the same regression task.

    To reduce redundancy when calling `_find_matching_floating_dtype`,
    please use `_check_reg_targets_with_floating_dtype` instead.

    Parameters
    ----------
    y_true : array-like of shape (n_samples,) or (n_samples, n_outputs)
        Ground truth (correct) target values.

    y_pred : array-like of shape (n_samples,) or (n_samples, n_outputs)
        Estimated target values.

    sample_weight : array-like of shape (n_samples,) or None
        Sample weights.

    multioutput : array-like or string in ['raw_values', uniform_average',
        'variance_weighted'] or None
        None is accepted due to backward compatibility of r2_score().

    dtype : str or list, default="numeric"
        the dtype argument passed to check_array.

    xp : module, default=None
        Precomputed array namespace module. When passed, typically from a caller
        that has already performed inspection of its own inputs, skips array
        namespace inspection.

    Returns
    -------
    type_true : one of {'continuous', continuous-multioutput'}
        The type of the true target data, as output by
        'utils.multiclass.type_of_target'.

    y_true : array-like of shape (n_samples, n_outputs)
        Ground truth (correct) target values.

    y_pred : array-like of shape (n_samples, n_outputs)
        Estimated target values.

    sample_weight : array-like of shape (n_samples,) or None
        Sample weights.

    multioutput : array-like of shape (n_outputs) or string in ['raw_values',
        uniform_average', 'variance_weighted'] or None
        Custom output weights if ``multioutput`` is array-like or
        just the corresponding argument if ``multioutput`` is a
        correct keyword.
    xpF)	ensure_2ddtype)r*      )r+   z<y_true and y_pred have different number of output ({0}!={1}))
raw_valuesuniform_averagevariance_weightedzIAllowed 'multioutput' string values are {}. You provided multioutput={!r})r)   z5Custom weights are useful only in multi-output cases.r   z+There must be equally many custom weights (z) as outputs (z).
continuouscontinuous-multioutput)r   r   r   r   ndimreshapeshape
ValueErrorformat
isinstancestr)
y_truey_predsample_weightmultioutputr*   r(   _	n_outputsallowed_multioutput_stry_types
             T/var/www/html/planif/env/lib/python3.12/site-packages/sklearn/metrics/_regression.py_check_reg_targetsrB   <   s   h &&+"=EBFFM:5>F5>F ,]F%P{{aFG,{{aFG,||A&,,q/)JQQQa
 	
 QIT+s#55006+[1  
	 !+?>TUU+++A..%%a()	{"F  '!^\1IF66=+==    c                 \    t        | |||      }t        | |||||      \  }} }}}|| |||fS )a  Ensures y_true, y_pred, and sample_weight correspond to same regression task.

    Extends `_check_reg_targets` by automatically selecting a suitable floating-point
    data type for inputs using `_find_matching_floating_dtype`.

    Use this private method only when converting inputs to array API-compatibles.

    Parameters
    ----------
    y_true : array-like of shape (n_samples,) or (n_samples, n_outputs)
        Ground truth (correct) target values.

    y_pred : array-like of shape (n_samples,) or (n_samples, n_outputs)
        Estimated target values.

    sample_weight : array-like of shape (n_samples,)

    multioutput : array-like or string in ['raw_values', 'uniform_average',         'variance_weighted'] or None
        None is accepted due to backward compatibility of r2_score().

    xp : module, default=None
        Precomputed array namespace module. When passed, typically from a caller
        that has already performed inspection of its own inputs, skips array
        namespace inspection.

    Returns
    -------
    type_true : one of {'continuous', 'continuous-multioutput'}
        The type of the true target data, as output by
        'utils.multiclass.type_of_target'.

    y_true : array-like of shape (n_samples, n_outputs)
        Ground truth (correct) target values.

    y_pred : array-like of shape (n_samples, n_outputs)
        Estimated target values.

    sample_weight : array-like of shape (n_samples,), default=None
        Sample weights.

    multioutput : array-like of shape (n_outputs) or string in ['raw_values',         'uniform_average', 'variance_weighted'] or None
        Custom output weights if ``multioutput`` is array-like or
        just the corresponding argument if ``multioutput`` is a
        correct keyword.
    r'   )r*   r(   )r   rB   )r9   r:   r;   r<   r(   
dtype_namer@   s          rA   &_check_reg_targets_with_floating_dtyperF      sK    d /vv}QSTJ9K{*:6FFFM; 66=+==rC   z
array-liker-   r.   r9   r:   r;   r<   T)prefer_skip_nested_validationr;   r<   c                    t        | |||      \  }}t        | ||||      \  }} }}}t        |j                  || z
        |d|      }t	        |t
              r|dk(  r|S |dk(  rd}t        ||      }t        |      S )aa  Mean absolute error regression loss.

    The mean absolute error is a non-negative floating point value, where best value
    is 0.0. Read more in the :ref:`User Guide <mean_absolute_error>`.

    Parameters
    ----------
    y_true : array-like of shape (n_samples,) or (n_samples, n_outputs)
        Ground truth (correct) target values.

    y_pred : array-like of shape (n_samples,) or (n_samples, n_outputs)
        Estimated target values.

    sample_weight : array-like of shape (n_samples,), default=None
        Sample weights.

    multioutput : {'raw_values', 'uniform_average'}  or array-like of shape             (n_outputs,), default='uniform_average'
        Defines aggregating of multiple output values.
        Array-like value defines weights used to average errors.

        'raw_values' :
            Returns a full set of errors in case of multioutput input.

        'uniform_average' :
            Errors of all outputs are averaged with uniform weight.

    Returns
    -------
    loss : float or array of floats
        If multioutput is 'raw_values', then mean absolute error is returned
        for each output separately.
        If multioutput is 'uniform_average' or an ndarray of weights, then the
        weighted average of all output errors is returned.

        MAE output is non-negative floating point. The best value is 0.0.

    Examples
    --------
    >>> from sklearn.metrics import mean_absolute_error
    >>> y_true = [3, -0.5, 2, 7]
    >>> y_pred = [2.5, 0.0, 2, 8]
    >>> mean_absolute_error(y_true, y_pred)
    0.5
    >>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
    >>> y_pred = [[0, 2], [-1, 2], [8, -5]]
    >>> mean_absolute_error(y_true, y_pred)
    0.75
    >>> mean_absolute_error(y_true, y_pred, multioutput='raw_values')
    array([0.5, 1. ])
    >>> mean_absolute_error(y_true, y_pred, multioutput=[0.3, 0.7])
    0.85...
    r'   r   )weightsaxisr(   r-   r.   NrK   )r   rF   r   absr7   r8   float)r9   r:   r;   r<   r(   r=   output_errorsr   s           rA   r   r      s    B &&-EEB 	/FM;2	
 2Avv}k 
vQ2M +s#,&  --K #=+F$%%rC   r+   both)closed)r9   r:   r;   alphar<         ?r;   rS   r<   c                j   t        | |||      \  }}t        | ||||      \  }} }}}| |z
  }|j                  |dk\  |j                        }||z  |z  d|z
  d|z
  z  |z  z
  }	t	        |	|d      }
t        |t              r|dk(  r|
S t        |t              r|dk(  rd}t        t	        |
|            S )	a  Pinball loss for quantile regression.

    Read more in the :ref:`User Guide <pinball_loss>`.

    Parameters
    ----------
    y_true : array-like of shape (n_samples,) or (n_samples, n_outputs)
        Ground truth (correct) target values.

    y_pred : array-like of shape (n_samples,) or (n_samples, n_outputs)
        Estimated target values.

    sample_weight : array-like of shape (n_samples,), default=None
        Sample weights.

    alpha : float, slope of the pinball loss, default=0.5,
        This loss is equivalent to :ref:`mean_absolute_error` when `alpha=0.5`,
        `alpha=0.95` is minimized by estimators of the 95th percentile.

    multioutput : {'raw_values', 'uniform_average'}  or array-like of shape             (n_outputs,), default='uniform_average'
        Defines aggregating of multiple output values.
        Array-like value defines weights used to average errors.

        'raw_values' :
            Returns a full set of errors in case of multioutput input.

        'uniform_average' :
            Errors of all outputs are averaged with uniform weight.

    Returns
    -------
    loss : float or ndarray of floats
        If multioutput is 'raw_values', then mean absolute error is returned
        for each output separately.
        If multioutput is 'uniform_average' or an ndarray of weights, then the
        weighted average of all output errors is returned.

        The pinball loss output is a non-negative floating point. The best
        value is 0.0.

    Examples
    --------
    >>> from sklearn.metrics import mean_pinball_loss
    >>> y_true = [1, 2, 3]
    >>> mean_pinball_loss(y_true, [0, 2, 3], alpha=0.1)
    0.03...
    >>> mean_pinball_loss(y_true, [1, 2, 4], alpha=0.1)
    0.3...
    >>> mean_pinball_loss(y_true, [0, 2, 3], alpha=0.9)
    0.3...
    >>> mean_pinball_loss(y_true, [1, 2, 4], alpha=0.9)
    0.03...
    >>> mean_pinball_loss(y_true, y_true, alpha=0.1)
    0.0
    >>> mean_pinball_loss(y_true, y_true, alpha=0.9)
    0.0
    r'   r   r+   rK   rL   r-   r.   NrM   )r   rF   astyper*   r   r7   r8   rO   )r9   r:   r;   rS   r<   r(   r=   diffsignlossrP   s              rA   r   r   5  s    N &&-EEB 	/FM;2	
 2Avv}k F?D99TQY

+D4<$!e)D!9D!@@DT=qAM+s#|(C+s#7H(H -=>>rC   c                   t        | |||      \  }}}t        | ||||      \  }} }}}|j                  |j                  |j                        j
                  | j                  |      }|j                  |       }|j                  || z
        |j                  ||      z  }	t        |	|d      }
t        |t              r|dk(  r|
S |dk(  rd}t        |
|      }t        |      S )	a
  Mean absolute percentage error (MAPE) regression loss.

    Note that we are not using the common "percentage" definition: the percentage
    in the range [0, 100] is converted to a relative value in the range [0, 1]
    by dividing by 100. Thus, an error of 200% corresponds to a relative error of 2.

    Read more in the :ref:`User Guide <mean_absolute_percentage_error>`.

    .. versionadded:: 0.24

    Parameters
    ----------
    y_true : array-like of shape (n_samples,) or (n_samples, n_outputs)
        Ground truth (correct) target values.

    y_pred : array-like of shape (n_samples,) or (n_samples, n_outputs)
        Estimated target values.

    sample_weight : array-like of shape (n_samples,), default=None
        Sample weights.

    multioutput : {'raw_values', 'uniform_average'} or array-like
        Defines aggregating of multiple output values.
        Array-like value defines weights used to average errors.
        If input is list then the shape must be (n_outputs,).

        'raw_values' :
            Returns a full set of errors in case of multioutput input.

        'uniform_average' :
            Errors of all outputs are averaged with uniform weight.

    Returns
    -------
    loss : float or ndarray of floats
        If multioutput is 'raw_values', then mean absolute percentage error
        is returned for each output separately.
        If multioutput is 'uniform_average' or an ndarray of weights, then the
        weighted average of all output errors is returned.

        MAPE output is non-negative floating point. The best value is 0.0.
        But note that bad predictions can lead to arbitrarily large
        MAPE values, especially if some `y_true` values are very close to zero.
        Note that we return a large value instead of `inf` when `y_true` is zero.

    Examples
    --------
    >>> from sklearn.metrics import mean_absolute_percentage_error
    >>> y_true = [3, -0.5, 2, 7]
    >>> y_pred = [2.5, 0.0, 2, 8]
    >>> mean_absolute_percentage_error(y_true, y_pred)
    0.3273...
    >>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
    >>> y_pred = [[0, 2], [-1, 2], [8, -5]]
    >>> mean_absolute_percentage_error(y_true, y_pred)
    0.5515...
    >>> mean_absolute_percentage_error(y_true, y_pred, multioutput=[0.3, 0.7])
    0.6198...
    >>> # the value when some element of the y_true is zero is arbitrarily high because
    >>> # of the division by epsilon
    >>> y_true = [1., 0., 2.4, 7.]
    >>> y_pred = [1.2, 0.1, 2.4, 8.]
    >>> mean_absolute_percentage_error(y_true, y_pred)
    112589990684262.48
    r'   )r*   devicer   rW   r-   r.   NrM   )r	   rF   asarrayfinfofloat64epsr*   rN   maximumr   r7   r8   rO   )r9   r:   r;   r<   r(   r=   device_epsilon
y_true_absmaperP   r   s               rA   r   r     s    Z .{NB7 	/FM;2	
 2Avv}k
 jj"**-11gjVGJ66&6/"RZZ
G%DDDT=qAM+s#,&  --K &.m[%Q"/00rC   c                    t        | |||      \  }}t        | ||||      \  }} }}}t        | |z
  dz  d|      }t        |t              r|dk(  r|S |dk(  rd}t        ||      }t        |      S )	aZ  Mean squared error regression loss.

    Read more in the :ref:`User Guide <mean_squared_error>`.

    Parameters
    ----------
    y_true : array-like of shape (n_samples,) or (n_samples, n_outputs)
        Ground truth (correct) target values.

    y_pred : array-like of shape (n_samples,) or (n_samples, n_outputs)
        Estimated target values.

    sample_weight : array-like of shape (n_samples,), default=None
        Sample weights.

    multioutput : {'raw_values', 'uniform_average'} or array-like of shape             (n_outputs,), default='uniform_average'
        Defines aggregating of multiple output values.
        Array-like value defines weights used to average errors.

        'raw_values' :
            Returns a full set of errors in case of multioutput input.

        'uniform_average' :
            Errors of all outputs are averaged with uniform weight.

    Returns
    -------
    loss : float or array of floats
        A non-negative floating point value (the best value is 0.0), or an
        array of floating point values, one for each individual target.

    Examples
    --------
    >>> from sklearn.metrics import mean_squared_error
    >>> y_true = [3, -0.5, 2, 7]
    >>> y_pred = [2.5, 0.0, 2, 8]
    >>> mean_squared_error(y_true, y_pred)
    0.375
    >>> y_true = [[0.5, 1],[-1, 1],[7, -6]]
    >>> y_pred = [[0, 2],[-1, 2],[8, -5]]
    >>> mean_squared_error(y_true, y_pred)
    0.708...
    >>> mean_squared_error(y_true, y_pred, multioutput='raw_values')
    array([0.41666667, 1.        ])
    >>> mean_squared_error(y_true, y_pred, multioutput=[0.3, 0.7])
    0.825...
    r'   r   r   )rL   rK   r-   r.   NrM   )r   rF   r   r7   r8   rO   )r9   r:   r;   r<   r(   r=   rP   r   s           rA   r   r     s    @ &&-EEB.FM;2	
 2Avv}k
 fvo!3!]SM+s#,&  --K "-E#$$rC   c                    t        | |||      \  }}|j                  t        | ||d            }t        |t              r|dk(  r|S |dk(  rd}t        ||      }t        |      S )a  Root mean squared error regression loss.

    Read more in the :ref:`User Guide <mean_squared_error>`.

    .. versionadded:: 1.4

    Parameters
    ----------
    y_true : array-like of shape (n_samples,) or (n_samples, n_outputs)
        Ground truth (correct) target values.

    y_pred : array-like of shape (n_samples,) or (n_samples, n_outputs)
        Estimated target values.

    sample_weight : array-like of shape (n_samples,), default=None
        Sample weights.

    multioutput : {'raw_values', 'uniform_average'} or array-like of shape             (n_outputs,), default='uniform_average'
        Defines aggregating of multiple output values.
        Array-like value defines weights used to average errors.

        'raw_values' :
            Returns a full set of errors in case of multioutput input.

        'uniform_average' :
            Errors of all outputs are averaged with uniform weight.

    Returns
    -------
    loss : float or ndarray of floats
        A non-negative floating point value (the best value is 0.0), or an
        array of floating point values, one for each individual target.

    Examples
    --------
    >>> from sklearn.metrics import root_mean_squared_error
    >>> y_true = [3, -0.5, 2, 7]
    >>> y_pred = [2.5, 0.0, 2, 8]
    >>> root_mean_squared_error(y_true, y_pred)
    0.612...
    >>> y_true = [[0.5, 1],[-1, 1],[7, -6]]
    >>> y_pred = [[0, 2],[-1, 2],[8, -5]]
    >>> root_mean_squared_error(y_true, y_pred)
    0.822...
    r-   rI   r.   NrM   )r   sqrtr   r7   r8   r   rO   )r9   r:   r;   r<   r(   r=   rP   r   s           rA   r   r   [  s{    v &&-EEBGGF-\	
M +s#,&  --K '}kJ())rC   c                   t        | |      \  }}t        | ||||      \  }} }}}|j                  | dk        s|j                  |dk        rt        d      t	        |j                  |       |j                  |      ||      S )a  Mean squared logarithmic error regression loss.

    Read more in the :ref:`User Guide <mean_squared_log_error>`.

    Parameters
    ----------
    y_true : array-like of shape (n_samples,) or (n_samples, n_outputs)
        Ground truth (correct) target values.

    y_pred : array-like of shape (n_samples,) or (n_samples, n_outputs)
        Estimated target values.

    sample_weight : array-like of shape (n_samples,), default=None
        Sample weights.

    multioutput : {'raw_values', 'uniform_average'} or array-like of shape             (n_outputs,), default='uniform_average'

        Defines aggregating of multiple output values.
        Array-like value defines weights used to average errors.

        'raw_values' :
            Returns a full set of errors when the input is of multioutput
            format.

        'uniform_average' :
            Errors of all outputs are averaged with uniform weight.

    Returns
    -------
    loss : float or ndarray of floats
        A non-negative floating point value (the best value is 0.0), or an
        array of floating point values, one for each individual target.

    Examples
    --------
    >>> from sklearn.metrics import mean_squared_log_error
    >>> y_true = [3, 5, 2.5, 7]
    >>> y_pred = [2.5, 5, 4, 8]
    >>> mean_squared_log_error(y_true, y_pred)
    0.039...
    >>> y_true = [[0.5, 1], [1, 2], [7, 6]]
    >>> y_pred = [[0.5, 2], [1, 2.5], [8, 8]]
    >>> mean_squared_log_error(y_true, y_pred)
    0.044...
    >>> mean_squared_log_error(y_true, y_pred, multioutput='raw_values')
    array([0.00462428, 0.08377444])
    >>> mean_squared_log_error(y_true, y_pred, multioutput=[0.3, 0.7])
    0.060...
    r'   r,   zcMean Squared Logarithmic Error cannot be used when targets contain values less than or equal to -1.rI   )r   rF   anyr5   r   log1pr9   r:   r;   r<   r(   r=   s         rA   r   r     s    D &&)EB 	/FM;2	
 2Avv}k 
vvflrvvfl3?
 	

 

#	 rC   c                   t        | |      \  }}t        | ||||      \  }} }}}|j                  | dk        s|j                  |dk        rt        d      t	        |j                  |       |j                  |      ||      S )ao  Root mean squared logarithmic error regression loss.

    Read more in the :ref:`User Guide <mean_squared_log_error>`.

    .. versionadded:: 1.4

    Parameters
    ----------
    y_true : array-like of shape (n_samples,) or (n_samples, n_outputs)
        Ground truth (correct) target values.

    y_pred : array-like of shape (n_samples,) or (n_samples, n_outputs)
        Estimated target values.

    sample_weight : array-like of shape (n_samples,), default=None
        Sample weights.

    multioutput : {'raw_values', 'uniform_average'} or array-like of shape             (n_outputs,), default='uniform_average'

        Defines aggregating of multiple output values.
        Array-like value defines weights used to average errors.

        'raw_values' :
            Returns a full set of errors when the input is of multioutput
            format.

        'uniform_average' :
            Errors of all outputs are averaged with uniform weight.

    Returns
    -------
    loss : float or ndarray of floats
        A non-negative floating point value (the best value is 0.0), or an
        array of floating point values, one for each individual target.

    Examples
    --------
    >>> from sklearn.metrics import root_mean_squared_log_error
    >>> y_true = [3, 5, 2.5, 7]
    >>> y_pred = [2.5, 5, 4, 8]
    >>> root_mean_squared_log_error(y_true, y_pred)
    0.199...
    r'   r,   zhRoot Mean Squared Logarithmic Error cannot be used when targets contain values less than or equal to -1.rI   )r   rF   rk   r5   r   rl   rm   s         rA   r   r     s    p &&)EB 	/FM;2	
 2Avv}k 
vvflrvvfl3?
 	

 #

#	 rC   )r9   r:   r<   r;   )r<   r;   c                L   t        | |||      \  }} }}}|.t        j                  t        j                  || z
        d      }n#t	        t        j                  || z
        |      }t        |t              r|dk(  r|S |dk(  rd}t        t        j                  ||            S )a=  Median absolute error regression loss.

    Median absolute error output is non-negative floating point. The best value
    is 0.0. Read more in the :ref:`User Guide <median_absolute_error>`.

    Parameters
    ----------
    y_true : array-like of shape (n_samples,) or (n_samples, n_outputs)
        Ground truth (correct) target values.

    y_pred : array-like of shape (n_samples,) or (n_samples, n_outputs)
        Estimated target values.

    multioutput : {'raw_values', 'uniform_average'} or array-like of shape             (n_outputs,), default='uniform_average'
        Defines aggregating of multiple output values. Array-like value defines
        weights used to average errors.

        'raw_values' :
            Returns a full set of errors in case of multioutput input.

        'uniform_average' :
            Errors of all outputs are averaged with uniform weight.

    sample_weight : array-like of shape (n_samples,), default=None
        Sample weights.

        .. versionadded:: 0.24

    Returns
    -------
    loss : float or ndarray of floats
        If multioutput is 'raw_values', then mean absolute error is returned
        for each output separately.
        If multioutput is 'uniform_average' or an ndarray of weights, then the
        weighted average of all output errors is returned.

    Examples
    --------
    >>> from sklearn.metrics import median_absolute_error
    >>> y_true = [3, -0.5, 2, 7]
    >>> y_pred = [2.5, 0.0, 2, 8]
    >>> median_absolute_error(y_true, y_pred)
    0.5
    >>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
    >>> y_pred = [[0, 2], [-1, 2], [8, -5]]
    >>> median_absolute_error(y_true, y_pred)
    0.75
    >>> median_absolute_error(y_true, y_pred, multioutput='raw_values')
    array([0.5, 1. ])
    >>> median_absolute_error(y_true, y_pred, multioutput=[0.3, 0.7])
    0.85
    Nr   rL   r;   r-   r.   rM   )	rB   npmedianrN   r   r7   r8   rO   average)r9   r:   r<   r;   r=   rP   s         rA   r   r   U  s    B 5G{51Avv}k 		"&&&"9B,FF6F?#=
 +s#,&  --KM;?@@rC   c                 t   | j                   }|dk7  }|s	d| |z  z
  }	n9| dk7  }
|j                  |g||      }	||
z  }d| |   ||   z  z
  |	|<   d|	|
| z  <   t        |t              r*|dk(  r|	S |dk(  rd}n|dk(  r|}|j	                  |      sd}n|}t        |		      }t        |      dk(  rt        |      S |S )
zCCommon part used by explained variance score and :math:`R^2` score.r   r+   )r]   r*           r-   r.   Nr/   rM   )r*   onesr7   r8   rk   r   r
   rO   )	numeratordenominatorr>   r<   force_finiter(   r]   r*   nonzero_denominatoroutput_scoresnonzero_numeratorvalid_scoreavg_weightsresults                 rA   _assemble_r2_explained_variancer     s    OOE%*Y45%N F%H),==%&k"[%==&
k" CF'+>*>>?+s#,&  --K//%K66-. #!m[9FF|qV}MrC   >   r-   r.   r/   boolean)r9   r:   r;   r<   rz   )r;   r<   rz   c          	      $   t        | |||      \  }}}t        | ||||      \  }} }}}t        | |z
  |d      }t        | |z
  |z
  dz  |d      }	t        | |d      }
t        | |
z
  dz  |d      }t        |	|| j                  d   ||||      S )a  Explained variance regression score function.

    Best possible score is 1.0, lower values are worse.

    In the particular case when ``y_true`` is constant, the explained variance
    score is not finite: it is either ``NaN`` (perfect predictions) or
    ``-Inf`` (imperfect predictions). To prevent such non-finite numbers to
    pollute higher-level experiments such as a grid search cross-validation,
    by default these cases are replaced with 1.0 (perfect predictions) or 0.0
    (imperfect predictions) respectively. If ``force_finite``
    is set to ``False``, this score falls back on the original :math:`R^2`
    definition.

    .. note::
       The Explained Variance score is similar to the
       :func:`R^2 score <r2_score>`, with the notable difference that it
       does not account for systematic offsets in the prediction. Most often
       the :func:`R^2 score <r2_score>` should be preferred.

    Read more in the :ref:`User Guide <explained_variance_score>`.

    Parameters
    ----------
    y_true : array-like of shape (n_samples,) or (n_samples, n_outputs)
        Ground truth (correct) target values.

    y_pred : array-like of shape (n_samples,) or (n_samples, n_outputs)
        Estimated target values.

    sample_weight : array-like of shape (n_samples,), default=None
        Sample weights.

    multioutput : {'raw_values', 'uniform_average', 'variance_weighted'} or             array-like of shape (n_outputs,), default='uniform_average'
        Defines aggregating of multiple output scores.
        Array-like value defines weights used to average scores.

        'raw_values' :
            Returns a full set of scores in case of multioutput input.

        'uniform_average' :
            Scores of all outputs are averaged with uniform weight.

        'variance_weighted' :
            Scores of all outputs are averaged, weighted by the variances
            of each individual output.

    force_finite : bool, default=True
        Flag indicating if ``NaN`` and ``-Inf`` scores resulting from constant
        data should be replaced with real numbers (``1.0`` if prediction is
        perfect, ``0.0`` otherwise). Default is ``True``, a convenient setting
        for hyperparameters' search procedures (e.g. grid search
        cross-validation).

        .. versionadded:: 1.1

    Returns
    -------
    score : float or ndarray of floats
        The explained variance or ndarray if 'multioutput' is 'raw_values'.

    See Also
    --------
    r2_score :
        Similar metric, but accounting for systematic offsets in
        prediction.

    Notes
    -----
    This is not a symmetric function.

    Examples
    --------
    >>> from sklearn.metrics import explained_variance_score
    >>> y_true = [3, -0.5, 2, 7]
    >>> y_pred = [2.5, 0.0, 2, 8]
    >>> explained_variance_score(y_true, y_pred)
    0.957...
    >>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
    >>> y_pred = [[0, 2], [-1, 2], [8, -5]]
    >>> explained_variance_score(y_true, y_pred, multioutput='uniform_average')
    0.983...
    >>> y_true = [-2, -2, -2]
    >>> y_pred = [-2, -2, -2]
    >>> explained_variance_score(y_true, y_pred)
    1.0
    >>> explained_variance_score(y_true, y_pred, force_finite=False)
    nan
    >>> y_true = [-2, -2, -2]
    >>> y_pred = [-2, -2, -2 + 1e-8]
    >>> explained_variance_score(y_true, y_pred)
    0.0
    >>> explained_variance_score(y_true, y_pred, force_finite=False)
    -inf
    r'   r   rW   r   r+   rx   ry   r>   r<   rz   r(   r]   )r	   rF   r   r   r4   )r9   r:   r;   r<   rz   r(   r=   r]   
y_diff_avgrx   
y_true_avgry   s               rA   r   r     s    h -VV]KXMB6 	/FM;2	
 2Avv}k &6/=qIJ	&:	%!+]I &-a@JFZ/A5}STUK*,,q/! rC   c          
         t        | |||      \  }}}t        | ||||      \  }} }}}t        |      dk  r'd}t        j                  |t
               t        d      S |t        |      }|dddf   }	nd}	|j                  |	| |z
  dz  z  d      }
|j                  |	| t        | d||	      z
  dz  z  d      }t        |
|| j                  d
   ||||      S )aX  :math:`R^2` (coefficient of determination) regression score function.

    Best possible score is 1.0 and it can be negative (because the
    model can be arbitrarily worse). In the general case when the true y is
    non-constant, a constant model that always predicts the average y
    disregarding the input features would get a :math:`R^2` score of 0.0.

    In the particular case when ``y_true`` is constant, the :math:`R^2` score
    is not finite: it is either ``NaN`` (perfect predictions) or ``-Inf``
    (imperfect predictions). To prevent such non-finite numbers to pollute
    higher-level experiments such as a grid search cross-validation, by default
    these cases are replaced with 1.0 (perfect predictions) or 0.0 (imperfect
    predictions) respectively. You can set ``force_finite`` to ``False`` to
    prevent this fix from happening.

    Note: when the prediction residuals have zero mean, the :math:`R^2` score
    is identical to the
    :func:`Explained Variance score <explained_variance_score>`.

    Read more in the :ref:`User Guide <r2_score>`.

    Parameters
    ----------
    y_true : array-like of shape (n_samples,) or (n_samples, n_outputs)
        Ground truth (correct) target values.

    y_pred : array-like of shape (n_samples,) or (n_samples, n_outputs)
        Estimated target values.

    sample_weight : array-like of shape (n_samples,), default=None
        Sample weights.

    multioutput : {'raw_values', 'uniform_average', 'variance_weighted'},             array-like of shape (n_outputs,) or None, default='uniform_average'

        Defines aggregating of multiple output scores.
        Array-like value defines weights used to average scores.
        Default is "uniform_average".

        'raw_values' :
            Returns a full set of scores in case of multioutput input.

        'uniform_average' :
            Scores of all outputs are averaged with uniform weight.

        'variance_weighted' :
            Scores of all outputs are averaged, weighted by the variances
            of each individual output.

        .. versionchanged:: 0.19
            Default value of multioutput is 'uniform_average'.

    force_finite : bool, default=True
        Flag indicating if ``NaN`` and ``-Inf`` scores resulting from constant
        data should be replaced with real numbers (``1.0`` if prediction is
        perfect, ``0.0`` otherwise). Default is ``True``, a convenient setting
        for hyperparameters' search procedures (e.g. grid search
        cross-validation).

        .. versionadded:: 1.1

    Returns
    -------
    z : float or ndarray of floats
        The :math:`R^2` score or ndarray of scores if 'multioutput' is
        'raw_values'.

    Notes
    -----
    This is not a symmetric function.

    Unlike most other scores, :math:`R^2` score may be negative (it need not
    actually be the square of a quantity R).

    This metric is not well-defined for single samples and will return a NaN
    value if n_samples is less than two.

    References
    ----------
    .. [1] `Wikipedia entry on the Coefficient of determination
            <https://en.wikipedia.org/wiki/Coefficient_of_determination>`_

    Examples
    --------
    >>> from sklearn.metrics import r2_score
    >>> y_true = [3, -0.5, 2, 7]
    >>> y_pred = [2.5, 0.0, 2, 8]
    >>> r2_score(y_true, y_pred)
    0.948...
    >>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
    >>> y_pred = [[0, 2], [-1, 2], [8, -5]]
    >>> r2_score(y_true, y_pred,
    ...          multioutput='variance_weighted')
    0.938...
    >>> y_true = [1, 2, 3]
    >>> y_pred = [1, 2, 3]
    >>> r2_score(y_true, y_pred)
    1.0
    >>> y_true = [1, 2, 3]
    >>> y_pred = [2, 2, 2]
    >>> r2_score(y_true, y_pred)
    0.0
    >>> y_true = [1, 2, 3]
    >>> y_pred = [3, 2, 1]
    >>> r2_score(y_true, y_pred)
    -3.0
    >>> y_true = [-2, -2, -2]
    >>> y_pred = [-2, -2, -2]
    >>> r2_score(y_true, y_pred)
    1.0
    >>> r2_score(y_true, y_pred, force_finite=False)
    nan
    >>> y_true = [-2, -2, -2]
    >>> y_pred = [-2, -2, -2 + 1e-8]
    >>> r2_score(y_true, y_pred)
    0.0
    >>> r2_score(y_true, y_pred, force_finite=False)
    -inf
    r'   r   z9R^2 score is not well-defined with less than two samples.nanNg      ?r   rp   )rL   rK   r(   r+   r   )r	   rF   r   warningswarnr   rO   r   sumr   r   r4   )r9   r:   r;   r<   rz   r(   r=   rc   msgweightrx   ry   s               rA   r   r   j  s   Z .{NB7
 	/FM;2	
 2Avv}k FaIc12U| $]3q$w'v&Q 66Q?I&&&8FMbQQVWWW  K
 +,,q/! rC   )r9   r:   c                     t        | |      \  }}t        | |dd|      \  }} }}}|dk(  rt        d      t        |j	                  |j                  | |z
                    S )ad  
    The max_error metric calculates the maximum residual error.

    Read more in the :ref:`User Guide <max_error>`.

    Parameters
    ----------
    y_true : array-like of shape (n_samples,)
        Ground truth (correct) target values.

    y_pred : array-like of shape (n_samples,)
        Estimated target values.

    Returns
    -------
    max_error : float
        A positive floating point value (the best value is 0.0).

    Examples
    --------
    >>> from sklearn.metrics import max_error
    >>> y_true = [3, 2, 7, 1]
    >>> y_pred = [4, 2, 7, 1]
    >>> max_error(y_true, y_pred)
    1.0
    N)r;   r<   r(   r1   z&Multioutput not supported in max_error)r   rB   r5   rO   maxrN   )r9   r:   r(   r=   r@   s        rA   r   r     sm    D &&)EB#5d$ FFFAq ))ABBv/011rC   c                    t        | |      \  }}}|}|dk  rtd|j                  |j                  | dkD  | d      d|z
        d|z
  d|z
  z  z  | |j                  |d|z
        z  d|z
  z  z
  |j                  |d|z
        d|z
  z  z   z  }n|dk(  r	| |z
  dz  }n|dk(  rdt        | | |z        | z
  |z   z  }n|dk(  r!d|j	                  || z        | |z  z   dz
  z  }n_d|j                  | d|z
        d|z
  d|z
  z  z  | |j                  |d|z
        z  d|z
  z  z
  |j                  |d|z
        d|z
  z  z   z  }t        t        ||            S )z&Mean Tweedie deviance regression loss.r   r   rv   r+   rM   )r	   powwherexlogylogrO   r   )	r9   r:   r;   powerr(   r=   rc   pdevs	            rA   _mean_tweedie_deviancer   H  s   -ff=NB7A1uFF!VS1A A!a% 	"
 rvvfa!e,,A67 ffVQU#q1u-.
 
a1$	
a5&1F:VCD	
a266&6/*Vf_<q@AFF61q5!a!eA%67rvvfa!e,,A67ffVQU#q1u-.

 #}566rC   rightleft)r9   r:   r;   r   r;   r   c                B   t        | |      \  }}t        | ||d|      \  }} }}}|dk(  rt        d      |"t        |      }|ddt        j
                  f   }d| d}|dk  r"|j                  |dk        rt        |dz         |dk(  rnd	|cxk  rd
k  r9n n6|j                  | dk        s|j                  |dk        rOt        |dz         |d
k\  r6|j                  | dk        s|j                  |dk        rt        |dz         t        t        | |||      S )a[  Mean Tweedie deviance regression loss.

    Read more in the :ref:`User Guide <mean_tweedie_deviance>`.

    Parameters
    ----------
    y_true : array-like of shape (n_samples,)
        Ground truth (correct) target values.

    y_pred : array-like of shape (n_samples,)
        Estimated target values.

    sample_weight : array-like of shape (n_samples,), default=None
        Sample weights.

    power : float, default=0
        Tweedie power parameter. Either power <= 0 or power >= 1.

        The higher `p` the less weight is given to extreme
        deviations between true and predicted targets.

        - power < 0: Extreme stable distribution. Requires: y_pred > 0.
        - power = 0 : Normal distribution, output corresponds to
          mean_squared_error. y_true and y_pred can be any real numbers.
        - power = 1 : Poisson distribution. Requires: y_true >= 0 and
          y_pred > 0.
        - 1 < p < 2 : Compound Poisson distribution. Requires: y_true >= 0
          and y_pred > 0.
        - power = 2 : Gamma distribution. Requires: y_true > 0 and y_pred > 0.
        - power = 3 : Inverse Gaussian distribution. Requires: y_true > 0
          and y_pred > 0.
        - otherwise : Positive stable distribution. Requires: y_true > 0
          and y_pred > 0.

    Returns
    -------
    loss : float
        A non-negative floating point value (the best value is 0.0).

    Examples
    --------
    >>> from sklearn.metrics import mean_tweedie_deviance
    >>> y_true = [2, 0, 1, 4]
    >>> y_pred = [0.5, 0.5, 2., 2.]
    >>> mean_tweedie_deviance(y_true, y_pred, power=1)
    1.4260...
    Nr<   r(   r1   z2Multioutput not supported in mean_tweedie_deviancez'Mean Tweedie deviance error with power=z can only be used on r   zstrictly positive y_pred.r+   r   z,non-negative y and strictly positive y_pred.zstrictly positive y and y_pred.r   )r   rF   r5   r   rr   newaxisrk   r   )r9   r:   r;   r   r(   r=   r@   messages           rA   r    r    i  s?   x &&)EB/U4B0,FFFM1 ))MNN $]3%am47w>STGqy66&A+W'BBCC	!	
ea66&1*!!4W'UUVV	!66&A+"&&1"5W'HHII !m5 rC   r9   r:   r;   rq   c                     t        | ||d      S )ad  Mean Poisson deviance regression loss.

    Poisson deviance is equivalent to the Tweedie deviance with
    the power parameter `power=1`.

    Read more in the :ref:`User Guide <mean_tweedie_deviance>`.

    Parameters
    ----------
    y_true : array-like of shape (n_samples,)
        Ground truth (correct) target values. Requires y_true >= 0.

    y_pred : array-like of shape (n_samples,)
        Estimated target values. Requires y_pred > 0.

    sample_weight : array-like of shape (n_samples,), default=None
        Sample weights.

    Returns
    -------
    loss : float
        A non-negative floating point value (the best value is 0.0).

    Examples
    --------
    >>> from sklearn.metrics import mean_poisson_deviance
    >>> y_true = [2, 0, 1, 4]
    >>> y_pred = [0.5, 0.5, 2., 2.]
    >>> mean_poisson_deviance(y_true, y_pred)
    1.4260...
    r+   r   r    r   s      rA   r!   r!     s    P !}TUVVrC   c                     t        | ||d      S )a  Mean Gamma deviance regression loss.

    Gamma deviance is equivalent to the Tweedie deviance with
    the power parameter `power=2`. It is invariant to scaling of
    the target variable, and measures relative errors.

    Read more in the :ref:`User Guide <mean_tweedie_deviance>`.

    Parameters
    ----------
    y_true : array-like of shape (n_samples,)
        Ground truth (correct) target values. Requires y_true > 0.

    y_pred : array-like of shape (n_samples,)
        Estimated target values. Requires y_pred > 0.

    sample_weight : array-like of shape (n_samples,), default=None
        Sample weights.

    Returns
    -------
    loss : float
        A non-negative floating point value (the best value is 0.0).

    Examples
    --------
    >>> from sklearn.metrics import mean_gamma_deviance
    >>> y_true = [2, 0.5, 1, 4]
    >>> y_pred = [0.5, 0.5, 2., 2.]
    >>> mean_gamma_deviance(y_true, y_pred)
    1.0568...
    r   r   r   r   s      rA   r"   r"     s    R !}TUVVrC   c                   t        | |      \  }}t        | ||d|      \  }} }}}|dk(  rt        d      t        |      dk  r'd}t	        j
                  |t               t        d      S |j                  | d	      |j                  |d	      }} t        | |||
      }t        | ||      }	t        | |	||
      }
d||
z  z
  S )a
  
    :math:`D^2` regression score function, fraction of Tweedie deviance explained.

    Best possible score is 1.0 and it can be negative (because the model can be
    arbitrarily worse). A model that always uses the empirical mean of `y_true` as
    constant prediction, disregarding the input features, gets a D^2 score of 0.0.

    Read more in the :ref:`User Guide <d2_score>`.

    .. versionadded:: 1.0

    Parameters
    ----------
    y_true : array-like of shape (n_samples,)
        Ground truth (correct) target values.

    y_pred : array-like of shape (n_samples,)
        Estimated target values.

    sample_weight : array-like of shape (n_samples,), default=None
        Sample weights.

    power : float, default=0
        Tweedie power parameter. Either power <= 0 or power >= 1.

        The higher `p` the less weight is given to extreme
        deviations between true and predicted targets.

        - power < 0: Extreme stable distribution. Requires: y_pred > 0.
        - power = 0 : Normal distribution, output corresponds to r2_score.
          y_true and y_pred can be any real numbers.
        - power = 1 : Poisson distribution. Requires: y_true >= 0 and
          y_pred > 0.
        - 1 < p < 2 : Compound Poisson distribution. Requires: y_true >= 0
          and y_pred > 0.
        - power = 2 : Gamma distribution. Requires: y_true > 0 and y_pred > 0.
        - power = 3 : Inverse Gaussian distribution. Requires: y_true > 0
          and y_pred > 0.
        - otherwise : Positive stable distribution. Requires: y_true > 0
          and y_pred > 0.

    Returns
    -------
    z : float
        The D^2 score.

    Notes
    -----
    This is not a symmetric function.

    Like R^2, D^2 score may be negative (it need not actually be the square of
    a quantity D).

    This metric is not well-defined for single samples and will return a NaN
    value if n_samples is less than two.

    References
    ----------
    .. [1] Eq. (3.11) of Hastie, Trevor J., Robert Tibshirani and Martin J.
           Wainwright. "Statistical Learning with Sparsity: The Lasso and
           Generalizations." (2015). https://hastie.su.domains/StatLearnSparsity/

    Examples
    --------
    >>> from sklearn.metrics import d2_tweedie_score
    >>> y_true = [0.5, 1, 2.5, 7]
    >>> y_pred = [1, 1, 5, 3.5]
    >>> d2_tweedie_score(y_true, y_pred)
    0.285...
    >>> d2_tweedie_score(y_true, y_pred, power=1)
    0.487...
    >>> d2_tweedie_score(y_true, y_pred, power=2)
    0.630...
    >>> d2_tweedie_score(y_true, y_true, power=2)
    1.0
    Nr   r1   z-Multioutput not supported in d2_tweedie_scorer   9D^2 score is not well-defined with less than two samples.r   r+   rp   r   )rK   r(   )r   rF   r5   r   r   r   r   rO   squeezer    r   r   )r9   r:   r;   r   r(   r=   r@   r   rx   y_avgry   s              rA   r#   r#      s    r &&)EB/U4B0,FFFM1 ))HIIFaIc12U|ZZQZ/F1KFF%m5I V]r:E(]%K y;&&&rC   c                   t        | |||      \  }} }}}t        |      dk  r'd}t        j                  |t               t        d      S t        | |||d      }|;t        j                  t        j                  | |dz  d	      t        |       d
f      }n0t        j                  t        | ||dz        t        |       d
f      }t        | |||d      }	|dk7  }
|	dk7  }|
|z  }t        j                  | j                  d
         }d
||   |	|   z  z
  ||<   d||
| z  <   t        |t              r
|dk(  r|S d}n|}t        t        j                   ||            S )u
  
    :math:`D^2` regression score function, fraction of pinball loss explained.

    Best possible score is 1.0 and it can be negative (because the model can be
    arbitrarily worse). A model that always uses the empirical alpha-quantile of
    `y_true` as constant prediction, disregarding the input features,
    gets a :math:`D^2` score of 0.0.

    Read more in the :ref:`User Guide <d2_score>`.

    .. versionadded:: 1.1

    Parameters
    ----------
    y_true : array-like of shape (n_samples,) or (n_samples, n_outputs)
        Ground truth (correct) target values.

    y_pred : array-like of shape (n_samples,) or (n_samples, n_outputs)
        Estimated target values.

    sample_weight : array-like of shape (n_samples,), default=None
        Sample weights.

    alpha : float, default=0.5
        Slope of the pinball deviance. It determines the quantile level alpha
        for which the pinball deviance and also D2 are optimal.
        The default `alpha=0.5` is equivalent to `d2_absolute_error_score`.

    multioutput : {'raw_values', 'uniform_average'} or array-like of shape             (n_outputs,), default='uniform_average'
        Defines aggregating of multiple output values.
        Array-like value defines weights used to average scores.

        'raw_values' :
            Returns a full set of errors in case of multioutput input.

        'uniform_average' :
            Scores of all outputs are averaged with uniform weight.

    Returns
    -------
    score : float or ndarray of floats
        The :math:`D^2` score with a pinball deviance
        or ndarray of scores if `multioutput='raw_values'`.

    Notes
    -----
    Like :math:`R^2`, :math:`D^2` score may be negative
    (it need not actually be the square of a quantity D).

    This metric is not well-defined for a single point and will return a NaN
    value if n_samples is less than two.

     References
    ----------
    .. [1] Eq. (7) of `Koenker, Roger; Machado, José A. F. (1999).
           "Goodness of Fit and Related Inference Processes for Quantile Regression"
           <https://doi.org/10.1080/01621459.1999.10473882>`_
    .. [2] Eq. (3.11) of Hastie, Trevor J., Robert Tibshirani and Martin J.
           Wainwright. "Statistical Learning with Sparsity: The Lasso and
           Generalizations." (2015). https://hastie.su.domains/StatLearnSparsity/

    Examples
    --------
    >>> from sklearn.metrics import d2_pinball_score
    >>> y_true = [1, 2, 3]
    >>> y_pred = [1, 3, 3]
    >>> d2_pinball_score(y_true, y_pred)
    0.5
    >>> d2_pinball_score(y_true, y_pred, alpha=0.9)
    0.772...
    >>> d2_pinball_score(y_true, y_pred, alpha=0.1)
    -1.045...
    >>> d2_pinball_score(y_true, y_true, alpha=0.1)
    1.0
    r   r   r   r-   rU   Nd   r   )qrL   r+   )r;   percentile_rankrv   rM   )rB   r   r   r   r   rO   r   rr   tile
percentilelenr   rw   r4   r7   r8   rt   )r9   r:   r;   rS   r<   r=   r   rx   
y_quantilery   r}   r{   r~   r|   r   s                  rA   r$   r$     s   x 5G{51Avv}k FaIc12U|!# I WWMM&ECKa83v;:J

 WW mUS[ [!	

 $# K "Q%*#&99KGGFLLO,M!"i&<{;?W&W!XM+>AM#':&::;+s#,&   K!M;?@@rC   c                "    t        | ||d|      S )a
  
    :math:`D^2` regression score function, fraction of absolute error explained.

    Best possible score is 1.0 and it can be negative (because the model can be
    arbitrarily worse). A model that always uses the empirical median of `y_true`
    as constant prediction, disregarding the input features,
    gets a :math:`D^2` score of 0.0.

    Read more in the :ref:`User Guide <d2_score>`.

    .. versionadded:: 1.1

    Parameters
    ----------
    y_true : array-like of shape (n_samples,) or (n_samples, n_outputs)
        Ground truth (correct) target values.

    y_pred : array-like of shape (n_samples,) or (n_samples, n_outputs)
        Estimated target values.

    sample_weight : array-like of shape (n_samples,), default=None
        Sample weights.

    multioutput : {'raw_values', 'uniform_average'} or array-like of shape             (n_outputs,), default='uniform_average'
        Defines aggregating of multiple output values.
        Array-like value defines weights used to average scores.

        'raw_values' :
            Returns a full set of errors in case of multioutput input.

        'uniform_average' :
            Scores of all outputs are averaged with uniform weight.

    Returns
    -------
    score : float or ndarray of floats
        The :math:`D^2` score with an absolute error deviance
        or ndarray of scores if 'multioutput' is 'raw_values'.

    Notes
    -----
    Like :math:`R^2`, :math:`D^2` score may be negative
    (it need not actually be the square of a quantity D).

    This metric is not well-defined for single samples and will return a NaN
    value if n_samples is less than two.

     References
    ----------
    .. [1] Eq. (3.11) of Hastie, Trevor J., Robert Tibshirani and Martin J.
           Wainwright. "Statistical Learning with Sparsity: The Lasso and
           Generalizations." (2015). https://hastie.su.domains/StatLearnSparsity/

    Examples
    --------
    >>> from sklearn.metrics import d2_absolute_error_score
    >>> y_true = [3, -0.5, 2, 7]
    >>> y_pred = [2.5, 0.0, 2, 8]
    >>> d2_absolute_error_score(y_true, y_pred)
    0.764...
    >>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
    >>> y_pred = [[0, 2], [-1, 2], [8, -5]]
    >>> d2_absolute_error_score(y_true, y_pred, multioutput='uniform_average')
    0.691...
    >>> d2_absolute_error_score(y_true, y_pred, multioutput='raw_values')
    array([0.8125    , 0.57142857])
    >>> y_true = [1, 2, 3]
    >>> y_pred = [1, 2, 3]
    >>> d2_absolute_error_score(y_true, y_pred)
    1.0
    >>> y_true = [1, 2, 3]
    >>> y_pred = [2, 2, 2]
    >>> d2_absolute_error_score(y_true, y_pred)
    0.0
    >>> y_true = [1, 2, 3]
    >>> y_pred = [3, 2, 1]
    >>> d2_absolute_error_score(y_true, y_pred)
    -1.0
    rT   rU   )r$   rG   s       rA   r%   r%   )  s    ~ m3K rC   )numericN)N)2__doc__r   numbersr   numpyrr   
exceptionsr   utils._array_apir   r   r   r	   r
   r   r   utils._param_validationr   r   r   utils.statsr   utils.validationr   r   r   r   r   __ALL__rB   rF   r   r   r   r   r   r   r   r   r   r   r   r   r   r    r!   r"   r#   r$   r%    rC   rA   <module>r      s      /  L K . , EI^>D 488>v ..&-"L2C#DE|T	 #' &*7HQ&Q&h ..&-4Af56"L2C#DE|T #'	 &*BSV?	V?r ..&-"L2C#DE|T	 #' &*7H^1^1B ..&-"L2C#DE|T	 #' !M%M%` ..&-"L2C#DE|T	 #' &*7HH*H*V ..&-"L2C#DE|T	 #' !LL^ ..&-"L2C#DE|T	 #' &*7HBBJ .."L2C#DE|T&-	 #' $5DHAHAV/d ..&-MN
 #	 #'" !D ..&-MN

 #
 #'$ !bbJ .. #'!2!2H7B ..&-T473T1d62
	 #' <@q QQh ..&-
 #' <@  W WF ..&-
 #' :> !W!WH ..&-T473T1d62
	 #' 7;! d'd'N ..&-4Af56&789
	 #' &*BSFAFAR ..&-&789
	 #' &*7HUUrC   